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1. Introduction 

Resistive-switching memory elements based on metal-insulator-metal (MIM) 
diodes have attracted great interest due to their potential as components for simple, 
inexpensive, and high-density non-volatile storage devices. MIM diodes composed 
of a thin metal oxide layer sandwiched between 2 metal layers are ideal for cross-
point memory arrays, which are typically composed of 1 MIM stack and 1 resistor 
per unit, and organized in word and bit-lines. This design allows for the smallest 
memory cell size of 4F2, where F is the minimum feature size. Such resistive-
switching memory elements, also popularly referred to as resistive random access 
memory (RRAM), were previously fabricated using various transition metal oxides 
as the insulator layer, including titanium oxide (TiO2), niobium pentoxide (Nb2O5), 
nickel(II) oxide (NiO), strontium titanate (SrTiO3), strontium zirconate (SrZrO3), 
barium titanate (BaTiO3), lead titanate (PbTiO3), and aluminum oxide (Al2O3).1–13   

Much of the previously published works on TiO2-based resistive-switching devices 
speculate that the resistive switching is due to 1 of 2 possible mechanisms. A 
number of groups postulate that the formation of conducting filaments rich with 
oxygen vacancies form through electromigration when a large potential is applied 
across the film. This purportedly causes a significant drop in the 2-terminal 
resistance.4–7,9 With an exponential increase in current density due to these 
conductive filaments, localized heating within the filaments causes thermal 
rupturing, which then leads to their destruction, and thus brings the 2-terminal 
resistance back to a higher state. In the second suggested mechanism, the applied 
bias to the RRAM structure leads to an increase or decrease of defects at the 
TiO2/metal interface (possibly from oxygen ion migration), which changes the 
Schottky barrier height.1,2   

Earlier work focused on fabricating TiO2 RRAM structures using oxide films 
grown or deposited either by thermal or plasma oxidation of a Ti metal film or  
e-beam deposition of TiO2 granules, or through radio frequency (RF) reactive 
sputtering.1–3,11 These methods typically result in material with very poor thickness 
control, low uniformity, significant porosity, and high defect densities. On the other 
hand, atomic layer deposition (ALD) allows for precise control of the layer 
thickness and can produce higher quality films with very uniform coverage.5–7,9   

To support the study of thin TiO2 films, a Zr40Cu35Al15Ni10 (ZCAN) amorphous 
metal was used as the bottom anode electrode due to its relatively low surface 
roughness (typically ranging from 0.2 to 0.5 nm root mean square [RMS] as 
measured by atomic force microscopy).14 The low surface roughness allows for 
thinner insulator layers, on the order of 1 to 10 nm, to be deposited on top of the 
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bottom electrode with minimal risk of pinholing due to the roughness of the metal 
film, which in some cases can be on the same order of magnitude as the dielectric 
thickness. Al films, for example, can have a roughness of over 40 nm RMS.14 Due 
to the atomically flat nature of ZCAN, significant improvements in device 
reproducibility can be realized compared to most crystalline metals. Various metals 
were reviewed for the top cathode metal, and all were selected to have a lower work 
function compared to ZCAN, which has a metal work function of ~4.8 eV.14 This 
asymmetry in the electrodes has been found to promote Fowler-Nordheim 
tunneling, which assists with providing desirable current asymmetry in the current-
voltage (I-V) characteristics of the MIM diode.  

In this report, we explore how the thickness of an ALD-deposited TiO2 dielectric 
layer affects the RRAM electrical properties, which could help uncover the 
switching mechanism and lead to lower variability in massive RRAM arrays. 
Thicknesses of 5, 10, and 20 nm were reviewed, using a ZCAN bottom anode and 
an indium (In) top cathode. In was used as the cathode electrode due to its relatively 
high on/off ratios as determined by experimentation with different cathode metals. 
In metal has a reported work function of ~4.1 eV.15 

2. Experimental Procedure 

All devices used in this study were fabricated on silicon (Si) substrates with a  
300-nm layer of thermally grown silicon dioxide (SiO2). ZCAN films were then 
deposited to a thickness of 250 to 350 nm using a DC sputtering process with a 
chamber argon (Ar) pressure of 5 mTorr at 60 W. The TiO2 was grown using a 
thermal ALD process operating at 200 °C for thicknesses of 5, 10, and 20 nm using 
de-ionized water (H2O) and tetrakis(dimethylamido)titanium (TDMAT) heated to 
95 °C as the precursors. The thickness was confirmed using ellipsometry of 
equivalent films grown on Si substrates. The In top electrode was deposited using 
thermal evaporation, on samples patterned using contact photolithography based on 
the AZ 5214E reverse-image photoresist. X-ray photoelectron spectroscopy (XPS) 
was performed to confirm the composition of the TiO2 films. Confocal Raman 
spectroscopy was used to determine the morphology and uniformity of the TiO2 
films, and was measured using the 532-nm line of a frequency-doubled neodymium 
(Nd): yttrium aluminum garnet (YAG) laser as the excitation source at a power 
density of 11 mW/µm2 (Fig. 1).17 
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Fig. 1 Background-subtracted Raman spectra of 5-, 10-, and 20-nm-thick TiO2 films grown 
on a ZCAN bottom electrode are shown with the intensity showing a correlation with oxide 
thickness 

The devices were measured in a cryogenic probe station in a pure nitrogen (N2) 
atmosphere at 298 K. A Keithley 4200 semiconductor characterization system was 
used to extract the electrical properties via current density-voltage (J-V) sweeps, 
varying the voltage and measuring current over several preset ranges including ±1, 
±2, and ±2.5 V. The ratio of the resistance in the high resistance state (HRS) over 
the low resistance state (LRS) was derived from the J-V curves. Additionally, we 
performed an electro-forming step on all devices, which was carried out as a voltage 
sweep with a compliance current of 1 A/cm2. Several devices were measured for 
each device set and each device was manually cycled over 25 times in order to 
obtain repeatable and consistent J-V characteristics for the batch. Bipolar resistive 
switching was observed in all measured devices, and a representative J-V curve 
including the individual sweeps is highlighted in Fig. 2. 
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Fig. 2 J-V curve with the hysteretic sweep order represented by arrows on the plot. The 
device shown here is 60 µm x 60 µm in area, with a 250-nm-thick layer of ZCAN as the anode, 
a 20-nm-thick layer of TiO2, and a 300-nm-thick layer of In as the cathode. 

3. Results and Discussion 

The devices in this study had relatively low breakdown voltages ranging from  
–2 to –3.5 V depending on the insulator thickness. This is likely due to the fact that 
these ALD-grown films were significantly thinner than their counterparts in the 
literature. Varying the oxide thickness of the MIM structures provided surprising 
results. Figure 3 provides a log plot comparing the J-V characteristics of 
ZCAN/TiO2/In diodes with different insulator thicknesses. Current density 
increases as the TiO2 thickness increases. This appears counterintuitive, as an 
increase in oxide thickness would exponentially reduce tunneling current. 
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Fig. 3 Hysteretic J-V curves for 3 devices for TiO2 insulator thicknesses of 5, 10, and 20 nm 

Raman spectroscopy was used to determine the morphology of the 5-, 10-, and  
20-nm TiO2 films. The 10- and 20-nm films exhibited Raman spectra typical of an 
anatase phase. Using the frequency from the Raman measurement, full-width half-
maximum (FWHM) of the E1

g mode from the Raman analysis, correlated Raman, 
and XRD results by Zhang et al., we calculated the grain size to be  
4.7±0.5 and 8.1±0.5 nm for the 10- and 20-nm films, respectively.16,17 On the other 
hand, the 5-nm-thick films were found to be amorphous. We note that the blueshift 
and broadening of the FWHM of the E1

g mode may also be attributed to a combined 
mechanism involving both phonon confinement and non-stoichiometry effects.16 

We observe a hysteresis increase with increased oxide thickness as shown in  
Table 1. In the MIM structure with a 5-nm-thick TiO2 layer, there is little hysteresis 
present, but in the 10- and 20-nm MIM structures, a significant Ron/Roff ratio was 
produced. The Ron/Roff ratio as a function of applied voltage is shown in Fig. 4. We 
believe that the absence of an apparent hysteresis at the lower dielectric thicknesses 
is related amorphous structure of our 5-nm ALD films and the lower throughput 
current. For thicker films, we propose that the anatase phase of TiO2 promotes the 
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formation of conductive filaments, allowing the film to enter a lower resistance 
state. 

Table 1 Hysteresis, asymmetry, and current density for MIM structures based on a 
ZCAN/TiO2/In stack with varying TiO2 thickness 

Oxide Thickness 5 nm 10 nm 20 nm 

Maximum hysteresis 
1.1 at  

–1.35 V 

129 at  

–350 mV 

786 at 

–100 mV 

Asymmetry (off state) at 1 V 6.9 6.8 6.5 

Asymmetry (on state) at 1 V N/A 2.7 3.8 

Current density (mA/cm2) at 1 V 
(off state) 316 403 692 

 

 

Fig. 4 The Ron/Roff ratios as a function of reverse bias voltage for TiO2 insulator thicknesses 
of 5, 10, and 20 nm 
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4. Conclusion 

In this study, we fabricated and characterized several ZCAN/TiO2/In MIM resistive 
memory cells with varying oxide thickness. Since our films were fabricated using 
an ALD process in conjunction with an atomically smooth bottom electrode, we 
were able to track the effects of thickness on the current density in these devices, 
which has not been previously reported on. We were able to show that increasing 
the TiO2 thickness results in an increase in the current density for the devices, which 
we correlated to the increased ratio of anatase-to-amorphous TiO2 as well as 
increasing crystal size, which contributes to conduction through the bulk film, 
reducing the impact of filament formation. 
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LRS low resistance state 
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